Search results for "Boundary values"

showing 9 items of 9 documents

Zur Existenz von Lösungen gewisser Randwertaufgaben

1971

With the aid of some known results about integral equations of the Hammerstein type there is proofed an existence theorem for the following class of boundary value problems−y″−l 2 y′=f(x,y),y(a)=y(b)=0,l 2>0 mit|f(x, y)|=0,l 3 (x)>0. The existence range is determined by the greatest eigenvalue of some linear problem.

CombinatoricsApplied MathematicsGeneral MathematicsMathematical analysisLinear problemGeneral Physics and AstronomyExistence theoremIntegral equationBoundary valuesEigenvalues and eigenvectorsMathematicsZeitschrift für angewandte Mathematik und Physik ZAMP
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc

2003

Let ϕ \phi be a holomorphic self-map of the unit disc D \mathbb {D} . For every α ∈ ∂ D \alpha \in \partial \mathbb {D} , there is a measure τ α \tau _\alpha on ∂ D \partial \mathbb {D} (sometimes called Aleksandrov measure) defined by the Poisson representation Re ⁡ ( α + ϕ ( z ) ) / ( α − ϕ ( z ) ) = ∫ P ( z , ζ ) d τ α ( ζ ) \operatorname {Re}(\alpha +\phi (z))/(\alpha -\phi (z)) = \int P(z,\zeta ) \,d\tau _\alpha (\zeta ) . Its singular part σ α \sigma _\alpha measures in a natural way the “affinity” of ϕ \phi for the boundary value α \alpha . The affinity for values w w inside D \mathbb {D} is provided by the Nevanlinna counting function N ( w ) N(w) of ϕ \phi . We introduce a natural …

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisHolomorphic functionMultiplicity (mathematics)Poisson distribution01 natural sciencesBoundary values010101 applied mathematicssymbols.namesakesymbolsAngular derivative0101 mathematicsMathematicsTransactions of the American Mathematical Society
researchProduct

Commutators, C0-semigroups and resolvent estimates

2004

Abstract We study the existence and the continuity properties of the boundary values on the real axis of the resolvent of a self-adjoint operator H in the framework of the conjugate operator method initiated by Mourre. We allow the conjugate operator A to be the generator of a C 0 -semigroup (finer estimates require A to be maximal symmetric) and we consider situations where the first commutator [ H ,i A ] is not comparable to H . The applications include the spectral theory of zero mass quantum field models.

Spectral theoryC0- semigroupsSemigroupOperator (physics)Mathematical analysisSpectrum (functional analysis)Commutator (electric)Resolvent formalismMourre estimatelaw.inventionResolvent estimateslawHermitian adjointPositive commutatorsBoundary values of resolvent familiesConjugate operatorVirial theoremAnalysisMathematicsResolventJournal of Functional Analysis
researchProduct

A novel numerical meshless approach for electric potential estimation in transcranial stimulation

2015

In this paper, a first application of the method of fundamental solutions in estimating the electric potential and the spatial current density distribution in the brain due to transcranial stimulation, is presented. The coupled boundary value p roblems for the electric potential are solved in a meshless way, so avoiding the use of grid based numerical methods. A multi-spherical geometry is considered and numerical results are discussed.

Regularized meshless methodMathematical optimizationmethod of fundamental solutionQuantitative Biology::Neurons and CognitionNumerical analysistranscranial electrical stimulationCurrent density distributionGrid basedBoundary valuesPhysics and Astronomy (all)Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaApplied mathematicsMethod of fundamental solutionsMeshfree methodsmeshless methodElectric potentialnumerical approximationMathematics
researchProduct

Decay estimates in the supremum norm for the solutions to a nonlinear evolution equation

2014

We study the asymptotic behaviour, as t → ∞, of the solutions to the nonlinear evolution equationwhere ΔpNu = Δu + (p−2) (D2u(Du/∣Du∣)) · (Du/∣Du∣) is the normalized p-Laplace equation and p ≥ 2. We show that if u(x,t) is a viscosity solution to the above equation in a cylinder Ω × (0, ∞) with time-independent lateral boundary values, then it converges to the unique stationary solution h as t → ∞. Moreover, we provide an estimate for the decay rate of maxx∈Ω∣u(x,t) − h(x)∣.

Uniform normGeneral MathematicsMathematical analysista111CylinderViscosity solutionNonlinear evolutionStationary solutionnonlinear evolution equationBoundary valuesMathematicsProceedings of the Royal Society of Edinburgh, Section: A Mathematics
researchProduct

Analytical solution for composite layered beam subjected to uniformly distributed load

2016

ABSTRACTThe article presents an analytical theory for multilayered composite beams subjected to transverse uniformly distributed loads. The formulation is based on a layerwise model characterized by third-order approximation of the axial displacements and fourth-order approximation of the transverse displacements. The layerwise kinematical model is rewritten in terms of generalized variables. The beam equilibrium equations, expressed in terms of stress resultant, allow writing the boundary value governing problem. The layerwise fields are obtained by postprocessing steps. The main advantage is to ensure the accuracy level associated to the layerwise formulations preserving the computational…

Materials scienceGeneral MathematicsComposite number02 engineering and technologyEquilibrium equationBoundary valuesComposite beamsStress (mechanics)0203 mechanical engineeringdistributed loadMathematics (all)General Materials ScienceMechanics of MaterialSettore ING-IND/04 - Costruzioni E Strutture AerospazialiKinematical modelcomposite laminateCivil and Structural Engineeringbusiness.industryMechanical EngineeringMathematical analysisStructural engineering021001 nanoscience & nanotechnologyanalytical solutionTransverse plane020303 mechanical engineering & transportsMechanics of MaterialsMaterials Science (all)Beam theory0210 nano-technologybusinessBeam (structure)
researchProduct

Ordinary (p1,…,pm)-Laplacian systems with mixed boundary value conditions

2016

Abstract In this paper we prove the existence of multiple weak solutions for an ordinary mixed boundary value system with ( p 1 , … , p m )-Laplacian by using recent results of critical points.

Pure mathematicsApplied Mathematics010102 general mathematicsMathematical analysisGeneral EngineeringGeneral Medicine01 natural sciencesBoundary values010101 applied mathematicsComputational MathematicsBoundary value problem0101 mathematicsGeneral Economics Econometrics and FinanceLaplace operatorAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Infinitely many weak solutions for a mixed boundary value system with (p_1,…,p_m)-Laplacian

2014

The aim of this paper is to prove the existence of infinitely many weak solu- tions for a mixed boundary value system with (p1, . . . , pm)-Laplacian. The approach is based on variational methods.

Pure mathematicscritical pointsinfinitely many solutionsApplied MathematicsMathematical analysisvariational methodsBoundary valuesCritical points variational methods infinitely many solutions p-Laplacian.$p$-laplacianSettore MAT/05 - Analisi MatematicaQA1-939Laplace operatorMathematicsMathematics
researchProduct